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1. Introduction

The evaluation of complicated Feynman diagrams remains one of the theoretical challenges

to be met for the needs of the ongoing collider physics program. We develop an automated

method to evaluate loop diagrams with infrared and threshold singularities in all kinematic

regions. The method combines sector decomposition to simplify their infrared singular

structures and a deformation of the integration path to treat threshold singularities.

Sector decomposition was introduced as a simple systematic algorithm to evaluate loop

integrals by Binoth and Heinrich [1, 2]. The algorithm divides iteratively the integration

region into sectors; in each sector the integration variables which could produce an over-

lapping singularity are ordered according to their magnitude. The overlapping singularity

takes the form of a pole in the variable which approaches the singular limit first and can

be factored out.

A concern for the viability of the method has been the proliferation of terms. In explicit

calculations of cross-sections through next-to-next-to-leading order, it has been shown that

one can write efficient sector decomposition algorithms for realistic applications in gauge

field theories [3 – 8]. However, to date, automated sector decomposition is limited to the

calculation of infrared divergent loop diagrams in kinematic regions with trivial or no

thresholds. This could halt progress in evaluating amplitudes for interesting scattering

processes and fusion processes via heavy particles.

During the last few years an inspired method is being developed for the evaluation of

one-loop amplitudes by Nagy and Soper [9, 10]. In their method, the infrared and ultra-

violet divergences are matched algorithmically by simple counterterms for each diagram;

these add up to functions which integrate to the known universal poles in ǫ of one-loop

amplitudes. After the one-loop integrals are rendered finite in four dimensions, they per-

form a numerical integration over Feynman parameters and the loop momentum. They

have proposed a systematic way to find an integration contour in the space of Feynman

parameters which is suitable for a numerical integration.
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We have merged the algorithm for sector decomposition with the contour deformation

of Feynman parameters proposed by Nagy and Soper [10]. Since sector decomposition offers

a general solution to rendering Feynman diagrams with divergences in d → 4 dimensions

finite, in principle, we can now compute generic multi-loop integrals numerically in all

kinematic regions.

We have written three independent computer implementations of our method and per-

formed extensive checks evaluating a variety of one and two-loop scalar and tensor integrals

which we could verify with other methods. To prove the efficiency of our method, we have

recomputed all diagrams in the two-loop amplitudes for gg → h production via heavy

quarks and squarks, recently computed analytically. The new method yields numerical

results which are in excellent agreement with the analytic evaluation [11].

Lazopoulos, Melnikov and Petriello have recently presented [12] the evaluation of the

NLO QCD corrections to pp → ZZZ. The method in their publication is the same as the

one we are presenting. Here, we are applying it to the evaluation of a two-loop amplitude;

together with the work of [12] this emphasizes further the versatility of the method.

Binoth et al. have used a contour deformation to evaluate integrals which are free of

infrared divergences [13]. They also noted the possibility of merging sector decomposition

and contour deformation as an alternative to their reduction method. To our understand-

ing, the viability of this idea for practical applications was not investigated in [13].

A competitive numerical method for the evaluation of loop amplitudes is via Mellin-

Barnes representations [14, 15]. Loop integrals with a small number of kinematic scales tend

to have Mellin-Barnes representations with a lower dimensionality than the corresponding

Feynman parameter representations. In such cases the Mellin-Barnes method should be

advantageous; however, the method of this paper could perform better by increasing the

number of kinematic scales. In addition, as noted in [15], Mellin-Barnes integrals cannot

be computed stochastically in phase-space regions with mass dependent thresholds. For

such applications the Mellin-Barnes method can be used only for checking purposes in the

Euclidean region; sector decomposition with contour deformation could be then the only

viable numerical method to obtain a physical result.

We should also note that a very significant progress in developing numerically inte-

grable representations for two-loop three-point functions with threshold and infrared sin-

gularities has been made in [16]. However, this approach is yet not fully automated or

general and requires an indivindual study for each topology.

We now present the method and our numerical results and comparisons.

2. Method

We first introduce independent Feynman parameters for a multi-loop Feynman diagram.

In general, this yields a sum of terms of the form

I = C(ǫ) lim
δ→0

∫ 1

0
dx1 · · · dxn

F(~x, ǫ)
[

G(~x,M2
i , skl) − iδ

]α+nLǫ (2.1)
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where α is an integer, nL is the number of loops and Mi, skl are masses and kinematic

invariants. The function G is a polynomial of the independent Feynman parameters ~x.

The integrand can be singular at the edges of the integration region. As a first step, we

disentangle overlapping singularities using sector decomposition [17, 18, 1]. The outcome

is a sum of integrals of the type

Is = C(ǫ) lim
δ→0

∫ 1

0

dx1 · · · dxnx−α1+β1ǫ
1 · · · x−αn+βnǫ

n Fs(~x, ǫ)
[

Gs(~x,M2
i , skl) − iδ

]α+nLǫ (2.2)

The singularities at the edges of the integration region are now factorized. The function

Gs is finite at xi → 0, 1 and the singularities from the factors x−α+βǫ when α > 0 can be

extracted independently for each integration variable. However, Gs may produce singular-

ities if it vanishes inside the integration region. It is important to postpone the extraction

of the ǫ poles until we treat these threshold singularities first.

Following the method of Nagy and Soper [10], we construct a contour of integration

where the imaginary part of Gs is negative, that is, enforcing the −i δ prescription already

present in the original integral. The new contour is defined by deforming the integration

path of every Feynman parameter; it is parameterized by

zi = xi − iλxi(1 − xi)
∂Gs

∂xi

. (2.3)

Provided that no poles were crossed in going from [0, 1] to the contour C, we have

∫ 1

0

(

∏n
j=1 dxjx

−αj+βjǫ

j

)

Fs(~x, ǫ)
[

Gs(~x,M2
i , skl) − iδ

]α+nLǫ =

∫

C

(

∏n
j=1 dzjz

−αj+βjǫ

j

)

Fs(~z, ǫ)
[

Gs(~z,M2
i , skl)

]α+nLǫ . (2.4)

The choice of eq. (2.3) for the contour deformation guarantees that for small values of λ,

the function Gs acquires a negative imaginary part of order O(λ)

Gs(~z) = Gs(~x) − iλ
∑

i

xi(1 − xi)

(

∂Gs

∂xi

)2

+ O(λ2), (2.5)

where the O(λ2) terms are purely real. One could add higher order λn terms in eq. (2.3)

to cancel the imaginary parts of Gs at O(λ3) and higher orders. In practice, it is sufficient

to perform a linear deformation as in eq. (2.3), and choose a small enough value for λ such

that these contributions are suppressed.

Changing variables using the parameterization in eq. (2.3), each sector integral is now

written as

Is = C(ǫ)

∫ 1

0

n
∏

j=1

dxjz
−αj+βjǫ

j J (~x → ~z)L(~z(~x), ǫ)

= C(ǫ)

∫ 1

0

n
∏

j=1

dxjx
−αj+βjǫ

j

(

zj

xj

)−αj+βjǫ

J (~x → ~z)L(~z(~x), ǫ) (2.6)

where J (~x → ~z) is the Jacobian of the transformation of eq. (2.3). The function L is finite

in the boundary of the integration region and thus can be expanded as a Taylor series
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around ǫ = 0. From eq. (2.3) we can see that the ratios zi/xi = 1 +O(xi) are also smooth

in the singular limits.

Now, we are free to extract the ǫ poles in each integration variable by applying

∫ 1

0
dxx−n+ǫf(x) =

∫ 1

0
dxxǫ f(x) −

∑n−1
k=0 xk f(k)(0)

k!

xn
+

n−1
∑

k=0

f (k)(0)

k!(k + 1 − n + ǫ)
(2.7)

on eq. (2.6). After this expansion, we are left with integrals which can be safely expanded

in power series in ǫ. We compute the coefficients of the ǫ series numerically. Notice that in

presence of higher order singularities, n > 1, the expansion in eq. (2.7) involves derivatives

of both the Jacobian and the function L that contains all non-singular factors, including

factors coming from the tensor structure of the integral.

There are many options for the numerical evaluation of the resulting integrals. For

example, we can combine the contributions from all sectors into a single integrand; alterna-

tively, we can integrate each sector separately and sum up the results. We have found that

the second choice is usually better, since the adaptation of numerical integration algorithms

is more effective when dealing with simpler integrands.

We have implemented the method described above into three different programs. Sec-

tor decomposition and contour deformation are performed with MAPLE and MATHE-

MATICA routines. The same programs control the creation of numerical routines for the

evaluation of the integrals; these are written in FORTRAN or C++. In all implementa-

tions we use the integration routines in the Cuba [19] library, relying mostly on the Cuhre

and Divonne algorithms.

An important issue when performing the numerical integration is the value of the

parameter λ in eq. (2.3), which controls the magnitude of the contour deformation. A very

small value could result to instabilities due to rounding errors. A very big value could

result to a deformation with the wrong sign in eq. (2.3). This last case is easy to detect at

runtime and we have implemented diagnostic routines to abort the numerical evaluation if

Gs is found to have an imaginary part with the wrong sign. As we will show in the next

section in an specific example, there is usually a very comfortable interval for λ where the

result of the integration is insensitive to its value.

3. Results

We have applied our method to compute the two-loop amplitudes for gg → h mediated

by a heavy quark or a scalar quark purely numerically. These amplitudes have been

computed earlier either by using a mixture of analytic and numerical integrations [20, 21]

or analytically in [11] and in [22].1 We have evaluated all Feynman diagrams in these

amplitudes with a very good numerical precision. As an example, in figure 2 we show our

results for the diagram in figure 1a. On the left panel we plot the real part of the finite

piece of the diagram as a function of τ = s/(4m2), normalized to m2 = 1. The inset

plot gives a more detailed view of the threshold region, where the numerical integration is

1The integral representation of the result in [20] was expressed in an analytic form in [23]
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q̃

g̃

q

(a) (b)

Figure 1: (a) Feynman diagram contributing to gg → h with a heavy quark loop. (b) Master

integral arising in the calculation of gg → h in the MSSM.
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Figure 2: Results for the real part of the finite piece (Re(c0)) of the Feynman diagram in figure 1a.

The left panel shows the results of the numerical integration as black dots with error bars. The inset

plot zooms in on the threshold region, the red line corresponds to the evaluation of the analytic

result of [11]. The right panel shows the difference in percent of the numerical evaluation and

the analytic one, normalized to the latter. The gray bands correspond to the integration error. At

threshold this error is 3%.

most difficult, superimposed with the analytic results from [11]. The plot on the right panel

shows the percent difference between the numerical result and the analytic one, normalized

to the analytic value. In black lines we included the bands corresponding to the integration

error, obtained by adding in quadrature the errors quoted by the integration routine for

each sector. We obtain similar results for the single pole and for the imaginary parts of

both the single pole and the finite piece of this diagram.

As stressed above, the method relies on the proper choice of the value for the parameter

λ. Values that are too large produce imaginary parts with the wrong sign for the function

Gs. Very small values generate a contour that is too close to the real line –and thus to the

zeros of Gs– and produce numerical instabilities. In practical implementations, we found

that there is usually a good range for λ. As an example, in figure 3 we plot the results

for the scalar integral corresponding to the diagram in figure 1a as a function of λ for
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Figure 3: Results for the real part of the finite piece of the scalar integral corresponding to the

Feynman diagram in figure 1a as a function of the parameter λ for two fixed values of the kinematical

ratio τ . The results have been normalized to the analytic result for this master integral obtained

in [11].

two different values of τ . The results in these plots show that away from the threshold

region, the integration is rather insensitive to the value of λ chosen, as long as it induces

a deformation providing the right sign for the imaginary part in eq. (2.5). On the other

hand, close to the threshold region, the magnitude of the deformation has to be larger in

order to get a reliable estimate of the integral.

As a novel result, we applied our method to the calculation of the scalar integral

corresponding to the Feynman diagram of figure 1b. This integral is one of the master

integrals appearing in the SUSY QCD corrections to gg → h and it involves a massive

quark, a massive scalar quark and a massive gluino. Our results are displayed in figure 4 as

a function of τ = s/(4m2
q) for fixed values of m2

g̃ = 400/175m2
q and m2

q̃ = 600/175m2
q with

mq = 1. The results are again very stable over a wide range of λ. Due to the absence of

massless propagators, the numerical evaluation of this integral turns out to be substantially

faster than the scalar integral corresponding to the diagram of figure 1a.

4. Conclusions

We present a new method for the numerical evaluation of multi-loop Feynman diagrams

containing both infrared and threshold singularities. The method uses sector decomposi-

tion to extract the infrared singularities followed by contour deformation in the Feynman

parameters to deal with the thresholds present in the diagram. The algorithmic nature of

the approach naturally leads to a high degree of automatization in all the stages of the

calculation.

We tested the method recalculating the two loop corrections to gg → h mediated by a

massive quark and a massive scalar quark. We find that the method is very efficient and
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Figure 4: Results for the scalar integral corresponding to the Feynman diagram in figure 1b as

a function of τ = s/(4m2
q
) for fixed values of m2

g̃
= 400/175 m2

q
and m2

q̃
= 600/175 m2

q
. The inset

plots zoom in the threshold region. The estimated relative accuracy of the points is better that 1

per mille.

reliable, reproducing the analytic results with great accuracy.

Currently we are applying the technique to the calculation of the two loop SUSY QCD

corrections to gg → h. As an example, we have presented here results for one of the

most complicated with analytical methods, yet uncalculated, master integrals appearing in

this amplitude. We find excellent numerical behavior, showing that the framework has a

great potential for computing automatically general multi-loop processes involving internal

thresholds.
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